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Resistance and resistance fluctuations in random resistor networks under biased percolation
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We consider a two-dimensional random resistor netw@&RN) in the presence of two competing biased
processes consisting of the breaking and recovering of elementary resistors. These two processes are driven by
the joint effects of an electrical bias and of the heat exchange with a thermal bath. The electrical bias is set up
by applying a constant voltage or, alternatively, a constant current. Monte Carlo simulations are performed to
analyze the network evolution in the full range of bias values. Depending on the bias strength, electrical failure
or steady state are achieved. Here we investigate the steady state of the RRN focusing on the properties of the
non-Ohmic regime. In constant-voltage conditions, a scaling relation is found befRe&iR), and V/V,
where(R) is the average network resistan¢B), the linear regime resistance, avg the threshold value for
the onset of nonlinearity. A similar relation is found in constant-current conditions. The relative variance of
resistance fluctuations also exhibits a strong nonlinearity whose properties are investigated. The power spectral
density of resistance fluctuations presents a Lorentzian spectrum and the amplitude of fluctuations shows a
significant non-Gaussian behavior in the prebreakdown region. These results compare well with electrical
breakdown measurements in thin films of composites and of other conducting materials.
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[. INTRODUCTION role of the disorder, existence of scaling laws, predictability
of breakdown, etc[1-3,13,15,24
The study of electrical and mechanical stability of disor- Here we present a model of sufficient generality to ad-
dered systems is attracting a considerable interest in the relress the above issues. Our aim is to provide a theoretical
cent literature[1-23 because of its implications on both framework to study response and fluctuation phenomena un-
material technology1,2,17-23 and fundamental aspects re- der linear and nonlinear regimes in a wide class of disordered
lated to the response of these systems to high externalystems. To this purpose, we study the evolution of a random
stresseq1-16,24—-2% Indeed, the application of a finite resistor networkkRRN) in which two competing processes
stresqelectrical or mechanicato a disordered material gen- are present, defect generation and defect recovery, which de-
erally implies a nonlinear response, which ultimately leads tdermine the values of the elementary network resistances.
an irreversible breakdowtatastrophic behavipm the high  The two processes are biased percolatip84,3g, i.e.,
stress limit[1-3,19. Such catastrophic phenomena havedriven by the joint effect of an electrical bias and of the heat
been successfully studied by using percolation theorieexchange between the network and the thermal bath. The
[1-7,11-16,23—37 Critical phenomena near the percolation bias is applied through a constant voltage or, alternatively, a
threshold have been widely investigated in the electricatonstant current. Monte Carl@MC) simulations are per-
breakdown of granular metals or conductor-insulator comformed to investigate the network evolution in the full range
posites[1-7,12—-16,24—37 The associated critical expo- of bias values. Depending on the bias strength, an irrevers-
nents have been measurdd-3,6,16,25,26,30,31and theo- ible failure or a stationary state of the RRN can be achieved.
retically studied using continuum or lattice percolation By focusing on the steady state, we analyze the behavior of
models[1-3,25-37. In particular, large attention has been the average network resistand®) and the properties of the
devoted to the critical exponents describing the resistanceesistance fluctuations as a function of the bias. In constant-
and its relative noise in terms of the medium properteeg.,  voltage conditions, a scaling relation is found between
conducting particle fraction, defect concentration, )etc. (R)/(R), andV/V,, where(R), is the linear regime resis-
[1-6,16,25—3] However, very few attemp{d2-15,38,39  tance andV, the threshold value for the onset of nonlinear-
have been made so far to describe the behavior of a disoity. A similar relation is found in constant-current conditions.
dered medium over the full range of the applied stress, i.eThe relative variance of resistance fluctuations also exhibits a
by studying the response of the system to an external biastrong nonlinearity in the pre-breakdown regime whose
when the bias strength covers the full range of linear angroperties are discussed. The fluctuation analysis is com-
nonlinear regimes. Therefore, a satisfactory understanding gfleted by a further investigation of the noise resistance spec-
breakdown phenomena over the full dynamical regime is stiltrum and of the Gaussian features of the fluctuation ampli-
missing[13,15. On the other hand, relevant information cantudes. Theoretical results agree with electrical breakdown
be obtained from such a study, like: precursor phenomenaneasurements in thin films of compositgk4,15 and of
other conducting17,20,4Q or insulating material$41].
The paper is organized as follows. In Sec. Il we briefly
*Corresponding author. Email address: cecilia.pennetta@unile.itdescribe the model used. Section Il presents the results of
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the MC simulations for the resistance and its fluctuationshigher in the so called “hot spots” of the RR25]. On the

The main conclusions are drawn in Sec. V. other hand, forA=0 Eq. (2) yields T,=T,, which corre-
sponds to random processgzb,42. The same is true for
Il. MODEL vanishing small bias values, when Joule heating effects are
negligible.

We study a two-dimensional random resistor network of  As a result of the competition between the two processes
total resistancd?, made ofNy,, resistors, each of resistance and depending on the parameters related to the particular
rn, disposed on a square lattice. We take a square geometiyhysical system Ep,Eg,A,a,ro,N) and on the external
NXN, whereN determines the linear size of the lattice, with conditions(specified by the bias conditions and the bath tem-
the total number of resistors beigo=2N?. For the com-  peraturg, the RRN reaches a steady state or exhibits an irre-
parison with resistivity measurements in thin films, the valueversible breakdown. In the first case, the network resistance
of N can be related to the ratio between the size of theluctuates around an average va{l. In the second case, a
sample and the average size of the grains composing th&itical fraction of defectg,, corresponding to the percola-
sample. An external bias, represented by a constant votagetion threshold, is reached, i.eR diverges due to the exis-
or by a constant currert is applied to the RRN through tence of at least one continuous path of defects between the
electrical contacts realized by perfectly conducting bars aipper and lower sides of the netwd®5]. We note that in
the left- and right-hand sides of the network. A currgnts  the limit of a vanishing biagrandom processgand infinite
then flowing through each resistor. The RRN interacts with gattices (N—), the expression: Ex<Ep+KgTIn[1

thermal bath at temperaturk, and the resistances, are  +exp(~Ep/KgT,)] provides a sufficient condition for the ex-

taken to depend linearly on the local temperatuiigs, as istence of a steady stafé2].
The evolution of the RRN is obtained by MC simulations
Mn(Tn)=ro[1+a(Ty=To)]. 1) carried out according to the following iterative procedurg.

) ) ) o Starting from the perfect lattice with given local currents, the
In this expression is the temperature coefficient of the |oc4| temperatures,, are calculated according to E@); (ii)
resistance andl, is calculated by adopting the biased perco-he gefects are generated with probabilit, and the resis-
lation model[34,36,37 as tances of the unbroken resistors are changed as specified by
Eq. (1); (iii) the currents, are calculated by solving Kirch-

N .
B neig h ) . L. .
_ 2 22 off’s loop equations by the Gauss elimination method and
Th=Tot A falnt Npeig ;1 (Nif=rnig) | @ the local temperatures are updatéd) the defects are recov-

ered with probabilityWg and the temperature dependence of
Here, Npeig is the number of first neighbors around thén  unbroken resistors is again accounted foy;R, i,, andT,
resistor, the parametéx, measured if(K/W), describes the are finally calculated and the procedure is iterated f(dm
heat coupling of each resistor with the thermal bath and itintil one of the two following possibilities is achieved. In the
determines the importance of Joule heating effects. The pdirst, the percolation threshold is reached. In the second, the
rameterB is taken to be equal to 3/4 to provide a uniform RRN attains a steady state; in this case the iteration runs long
heating in the perfect network configuration. We note thatenough to allow a fluctuation analysis to be carried out. Each
Eg. (2) implies an instantaneous thermalization of each reiteration step can be associated with an elementary time step
sistor at the valu€l,,, therefore, by adopting Eq2), for ~ on an appropriate time scaléo be calibrated with experi-
simplicity we are neglecting time dependent effects that argnents. In this manner it is possible to represent the simula-

discussed in Ref.32]. tion of the resistance evolution over either a time or a fre-
In the initial state of the networkcorresponding to the quency domain according to convenience.
perfect network configuration with no heatjngll the resis- In the simulations, as reasonable values of the parameters,

tors are identicalr ,=r,. Now, we assume that two compet- we have taken:N=75, ro=1 (, a=10"°% K1, A=5

ing processes act to determine the RRN evolution. The firsk 10° K/IW, Ep=0.17 eV, Eg=0.043 eV, and T,
process consists of generating fully insulating defésis- =300 K if not stated otherwise. The values of the external
tors with very high resistance, i.e., broken resistoséth bias range from 0.051=<2.8 A under constant-current con-
probability[34,36,371 Wp =exp(—Ep /KgT,)), whereEp is an  ditions, and from 0.0&§V=<3.5 V under constant-voltage
activation energy characteristic of the defect akg the  conditions.
Boltzmann constant. The second process consists of recover-

ing the insulating defects with probability Wg
=exp(—Egr/KgT,), WhereEg is an activation energy charac-

teristic of this second proce$88]. Thus, the first process Figures 1a) and Xb) report a sampling of the resistance
consists in a percolation of broken resistors within a networlevolutions coming out from the simulations under steady-
of active resistors. This percolative process is contrasted bgtate conditions for the cases of constant voltdgg. 1(a)]

the recovery process. This second process can also be seeraasl constant currefifig. 1(b)], respectively. On increasing

a percolation of active resistors within an insulating network.the external bias, a remarkable increase of the average resis-
For A#0, Eq. (2) implies that both the processédefect tance and of the amplitude of fluctuations is evident in both
generation and defect recovergre correlated percolations. cases while approaching the breakdown. This is reached by
Indeed, the probability of breakingecovering a resistor is applying an external bias just above the highest values

Ill. RESULTS
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FIG. 2. Average network resistance as a function of the external
bias. The averages are calculated over 20 networks of sizes 75
X 75 subjected to the same bias conditions. The circles correspond
to biasing the network by an external constant current, the triangles
A correspond to a constant-voltage bias.
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1 v

09 ‘ 1=0.2 (A) . than the perfect network resistance. Under constant-current
~o 1000 2000 3000 4000 5000 conditions, when the current overcomes a certain vigjulke
Time (arb. units) average resistance starts to become dependent on the bias.

. . Thus, |, sets the current scale value for the onset of nonlin-
FIG. 1. (8) Resistance evolutions of a steady-statex75 net-  gqrity By adopting as criterium for the onset of nonlinearity
‘t""iggk Lén:iﬁr Cffgiiﬂzvgﬁgretgoaitfns for mcreastltr:g va::Jesvo_f th resistance increase of 0.05% over the linear response value,
; 9 bper curves, e volage 1s determinel ;=0.090+0.005 A. For currents abovk,

=0.2, 0.5, 1.0, 1.5, 2.0, and 3.0 V. The values of all the other,[h ist - . th at derate bi dit
parameters are specified in the tef) Resistance evolutions of a € resistance increase Is smooth at moderate bias and it ex-

steady-state 7875 network under constant-current conditions for hibits a sharp ramgtypical of a catastrophic behavioat

increasing values of the bias. Going from the lower to the uppefigh bias, until a threshold current vallig=2.10 A above
curves, the current i:=0.2, 0.5, 1.0, 1.5, and 2.1 A. The values Which the RRN undergoes an irreversible breakdown. A step

of current valuesl =0.05 A has been used to determine
thus this value obl gives the maximum uncertainty dg.

shown in these figures. Precisely, the RRN becomes unstabféecordingly, we have foundp/1o=23%1 and(R)p/(R)o

under constant voltage already by applying a voltage just 1.6+0.1, where(R)y, is the last stable value of the resis-
above 3.0 V and, under constant current, by applying a cuft@nce calculated before the breakdown. We remark that the

rent just above 2.1 A. uncertainty on the ratigR),/(R), is mainly due to the un-
In the following, Figs. 2—4 will detail the behavior of the Certainty on{R), which reflects, amplified by the nonlinear-

average resistance while Figs. 5-10 will focus on the result§y. the uncertainty ori,. Similarly, under constant-voltage
of resistance fluctuations. conditions we have found/b /VO=SZt 2 and <R>b/<R>O

=1.5+0.1, whereVy=0.095-0.005 V andV,=3.00 V
) are the voltage values corresponding respectively to the non-
A. Resistance linearity onset and to the electrical breakdown. The maxi-
Figure 2 reports the average value of the RRN resistanceium uncertainty orv, is 6V=0.05 V. The significantly
as a function of the applied bidsurrent or voltage Each  higher value of the rati&/,,/V,, when compared with that of
value is calculated by considering the time average on he ratiol,/l, is a quantitative indication that the system is
single steady-state realization and then averaging over 2@ore robust when biased under constant-voltage than under
independent realizationd)RRNs subjected to the same bias constant-current conditions. This property is further empha-
conditions. The numerical uncertainty is found to be within sized by the fact that the increase of the resistance in the
0.01% at worst. At the lowest biases the resistance takes @rebreakdown region exhibits a lower slope under constant-
value(R), that represents the intrinsic linear response propvoltage than under constant-current conditions. It must be
erty of the network(Ohmic regime [42]. We note that for noticed that in spite of the significant difference of the ratios
the activation energy values here chosen, the average fra®y,/Vy and I,/1,, the ratio(R),/(R), remains the same,
tion of defects at the lowest bigp)y is very small (p)q  within the error, under the different bias conditions. This

of all the other parameters are specified in the text.
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T slope =21 o power law of exponent 3:80.1.
~ Ve
& 107 | /@/ﬁ 3 where a=(1.1+0.1)x 10" % is a dimensionless coefficient
Y 7 and 6=2.1+0.1. Figure 8) shows that also under constant
& o current the relative variation of the average resistance scales
Mo L /@’ i with the ratiol/ly in the moderate bias region, as
7
g constant current conditions (Rhi s
——=1+a'|— (4)
107 , (R)o lo
1 10 100 with a’=(3.8+0.1)x 10" % and the same exponeatof Eq.
V|o (3), within numerical uncertainty. However, in this case we

) o notice that in the prebreakdown region the relative variation
FIG. 3. (a) Log-log plot of the relative variation of the network

resistance calculated under constant voltage as a function of the 3
ratio V/V,. The data are the same of those in Fig. 2 and only the
nonlinear regime is shown. The dotted line represents the power:

law fit with a value for the exponerit=2.1+0.1. (b) Log-log plot

of the relative variation of the network resistance calculated under

constant current as a function of the ratid,. The data are the 10 L § i
same of those in Fig. 2 and only the nonlinear regime is shown. The g
/
é‘

O—0 constant current: bias in A units
A—A constant voltage: bias in V units

long-dashed line represents the power-law fit of the data in the
moderate bias region, the value of the exponeti.1+0.1. The W
solid line fits the data in the prebreakdown region with a power law,

the value of the exponent i=3.7+0.1. 107°

result agrees with measurements of the raRd, /(R)q per- }___Q_m&m_@feﬁ

formed in composites under the Joule regirb].
To better analyze the dependence on the bias of the avel
age resistance, Figs(a83 and 3b) report the log-log plot of 107
the relative variation of the resistance as a functiov b,
and I/1y, respectively. Figure (8) shows that the relative

0.01 0.10 1.00 10.00
External bias

Ya“a“on of the average reslstance scales with the ki, FIG. 5. Relative variance of resistance fluctuatichsunder
in the whole region of applied voltages up to breakdown aSconstant—voltage conditiondriangles and under constant-current
I\s\ 6 conditions(open circleg as a function of the external bias. Each
(R)y Vv . . . !
- =14+a|l—]| , ©) point has been obtained by averaging the variances calculated for
(R)o Vo 20 networks of sizes 7675 subjected to the same bias conditions.
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of bias is further enhanced by the positive value of the tem-
@O perature coefficient of the resistance.
=~ 10° L ,Q i From a microscopic point of view, the RRN resistance
0 slope = 2.1 /6 depends on the average fraction of defe@s, according to
K, & the expressiofi25]
Ve
-1 pat _
10 ] s E <R>~|<p>_pc| ., 5
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o ~ constant current conditions where, for biased percolatiop, and . are functions of the
10 ’ , bias strengtti37,43. Of course, for vanis_hing biap, andu
1 10 100 take the well known values corresponding to random perco-
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FIG. 6. (8 Log-log plot of the relative variation oF under A constant voltage conditions ©
(?onstant-voltage conditions as a functlorw{vo..The long-dashed . O constant current conditions @}3@@
line represents the power-law fit to the data in the moderate bias 10" t ]

region, the value of the exponent is 2.0.1. The solid line fits data slope =1.6
in the prebreakdown region with a power law of exponent 3.0

o

+0.1.(b) Log-log plot of the relative variation & under constant-  j 0

current conditions as a function ofl,. The long-dashed line rep- = 10" ¢ o slope =1.5 {
resents the power-law fit to the data in the moderate bias region, thh] s

value of the exponent is 2+10.1. The solid line fits data in the 2 P

prebreakdown region with a power law of exponent5041. 107" s ]

7
.7 slope=1.0

of the average resistance exhibits a superquadratic behavic P

characterized by a power law/(o)? with §,=3.7+0.1. , et

This behavior of the average resistance with the applied 107 ¢ A , . 3
bias can be understood as follows. From a macroscopic poin 107 10°° 1072 10~ 10°
of view, in a degradation process associated with a resistanc [<R>-<R>_J/<R>,

increase, constant-current conditions lead, at increasing bias,

to a superquadratic increase of the power dissipated through g, 8. Log-log plot of the relative variation & as a function
Joule heating and thus to a major efficiency in the defecpt the relative variation of the average resistance under constant-
generation. By contrast, constant-voltage conditions lead, gfltage conditior(open circlesand constant-voltage conditigtri-
increasing bias, to a growth of the dissipated power which isingles. The long-dashed line gives the best fit with a power law
subquadratic in the applied voltage, thus implying a minorwith exponent 1.8 0.1. The solid and the dotted lines fit with a
efficiency in the generation of defects. In this respect, it muspower law the data in the prebreakdown region, the exponents are
be underlined that the resistance increase driven by both kintl5+0.1 and 1.6:0.1, respectively.
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FIG. 9. (a) Distribution fu.nctlon of the re5|star_lce fluctuations for I=1.8 A (solid curvé. In both cases the s(ubstrate ter:perature
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parabolic fits of the two sets of data, correspond to Gaussian distri-° ' T

butions. (b) Distribution function of the resistance fluctuations un- -
der constant-current conditions for two values of the substrate tem- (p)\/: 1+b X (6)
perature. Open circles refer #g=300 K [the same data reported (p)o Vo

in Fig. 9@)] and full triangles toT,=450 K. The scale is linear
log, therefore the dashed and the long-dashed curves, coming fromith b= (5.8+0.3)x10 % a dimensionless coefficient. A

parabolic fits of the two sets of data, correspond to Gaussian distrgimilar expression holds under constant-current conditions at

butions. moderate bias,
lation: p.=0.5 (for a square latticeand = 1.303(universal @_ 14b’ L ’ @
valug [25]. On the other hand, the dependencepgfaind u (P)o lo

on the bias makes the analysis (®) in terms of Eq.(5)

quite problematic. Nevertheless, it is interesting to analyzevith b’=(5.3+0.3)x 10 3. However, under constant cur-
the behavior of p) on the bias strength and, to this purpose,rent, there is a significant increase of the slope in the pre-
Fig. 4 reports on a log-log plot the relative variation(gf breakdown region up to a nearly above cubic power law.

as a function of the normalized bias. As evidenced by the The behavior of the average fraction of defects in the
figure, for the case of constant-voltage conditions the avemrmoderate bias region can be understood by generalizing the
age fraction of defects scales with the same expoflenter  results obtained in the case of two random proceg$&sto

the full range of bias values, as the presence of a moderate external bias responsible for
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Joule heating. In fact, for a RNN in a stationary state resultcoefficient of the resistance=0. In this case, we have

ing from the competition of two random processes, it hafound that the onset of nonlinearity as well as the electrical

been found [42] that (p)=x/(1+Xx), with x=W;yp(1 breakdown occur at higher values of the bias. Precisely we

—Wor)/Wor, whereWqp andWog are the probabilities de- have found 15=0.25£0.03 A, 1,=2.65-0.05 A (thus

defect it bution is rathey homogencots and the variationy oo -t L) (R1o/(R)o=1.20.1 under constant current
nd V;=0.25+0.03 V, V/=3.25£0.05 V (thus V,/V,

.Of (R) S’T"’?‘”' we can tak_ez=x(T) with T=To +AT, where — _ 13+1), and(R),/{R)o=1.3=0.1 under constant-voltage
in the spirit of a mean-field theory, the average temperatur%onditions The quadratic reaime is alwavs present at mod-
increase can be expressed &%=A(R)l%/(2N?). There- : q 9 ys P

fore, by differentiating, erate bias values. However, in the prebreakdown regime we
have found¢; =3.1+0.1 for constant-current ané\,=2.8
dx +0.1 for constant-voltage conditions, respectively.
d_T) AT, 8 We finally conclude this section by remarking that the
0 behavior described by Eg&) and(4) well agrees with mea-
surements of the resistance of composites made in the Joule
regime up to breakdowfi5].

1
A(FJ):m

which by simple manipulation gives

Ap)

(P)o

2

|
&
The term in the squared brackets of H§) can thus be
identified with theb’ coefficient in Eq.(7). In fact, by intro-
ducing the parameters used in the simulations we find for th
squared brackets in E¢Q) the value 5.5 10 2 which well
agrees with the previous reported valuebdf For constant
voltage the factoA(R),l3 inside Eq.(9) must be replaced
with AV3/(R),. This gives for the square bracket in H§)
the value of 6.X10 3, which again well agrees with the

INZ(pYol(1+x)7Jo| AT ®

A(R)ol2 ( dx)
0 B. Fluctuations

It is well known that important information about the
properties and the stability of different systerfmhysical,
Qiological, social, etg.can be obtained by studying the fluc-
tuations around the average value of some characteristic
guantities of the systefi—3,14-20,28—-31,33—45Several
features of the fluctuations are usually considered, and
among these, the most important are the variaforethe
relative variancg the power spectrum and the Gaussianity

value ofb in Eqg. (6). Therefore, at moderate bias, the qua_p_roperty. _Here, we analyze th_e fluctuations of _the RN.N re-
dratic behavior of(p) is well explained by Eq(9). In the 5|stan_ce in the full range of bias vall_Jes, (_Jl_evotmg p_arUcuIar
prebreakdown region, under constant-current conditions, th@ttention to the features that can be identified as failure pre-
significant increase of the resistance and the defect filamerguUrsors. Figure 5 reports the relative variance of resistance
tation characteristic of biased percolati@? 43 add to give fluctuations, X =(5R?)/(R)?, as a function of the applied
a superquadratic increase @f) with the bias. By contrast, bias. The data correspond to the same simulations presented
under constant voltage, these two effects act in an opposéll Fig. 2. The same procedure of time averaging over a
manner, thus their compensation results in a quadratic depefingle simulation and then making ensemble averages over
dence of(p) over the full range of bias values. 20 realizations provides an uncertainty of 3% at worst. At

From the above behavior of the average defect fractiofow bias, the relative variance is found to achieve a constant
we can now understand the bias dependend®pfAt mod-  valueS ,=(4.0+0.1)x 10 °. This value represents an intrin-
erate bias I(/15 or V/V(=<10) the increase ofR) is rather sic property of the system determined by the competition of
small. Accordingly, super and subquadratic effects on théwo random processes, as already discussed for the case of
dissipated power are negligible and the average fraction dhe resistance. A detailed analysis of the scaling properties of
defects over the intrinsic value grows quadratically with theX, can be found in Ref[42]. At increasing bias, whemh
bias strengthlEq. (9)]; at these bias valueép)<1 thus >1, or V>V, the systematic increase Bf reveals the ex-
(Ry=<(p) and also the average resistance grows quadraticallistence of a nonlinear regime of the response. Similarly to
with bias. At high biadi.e., /1, or V/V,>10), when enter- the behavior of the resistance, by approaching the electrical
ing the prebreakdown region, the increasg Rf is signifi-  breakdown3. exhibits a significant increase that is steeper
cant. Accordingly, super and subquadratic effects on the disdnder constant-current than under constant-voltage condi-
sipated power are relevant as well as the increase of théons. This feature is ascribed to the better stability of the
average fraction of defects, which now takes a nonuniforrRRN under constant voltage, since resistance fluctuations in
distribution (biased percolation As a consequence, the per- excess over the mean value are damped in this condition. By
colation threshold is lowered with respect to the random pereontrast, the same kind of fluctuations are enhanced under
colation value [43]. Depending on constant-current or constant-current conditions. To detail the dependenc® of
constant-voltage conditions, this biased percolation effecon the bias, we have reported in Figapits relative varia-
adds to further enhancing the increase of the resistance welbn, [2,—2,]/20, as a function ofV/V, under constant-
above the quadratic law or to keep the quadratic behavioroltage conditions. Two regions can be identified in the non-
respectively. linear regime: a moderate bias regionV/Y,<10),

This interpretation is confirmed by MC simulations per- characterized by a quadratic dependence on the applied volt-
formed with the same parameters but setting the temperatuege, and a prebreakdown region at the highest voltages
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(VIVy>10), where a superquadratic dependence up to a cuion 37,43, implies that a small variation in the number of
bic power law is evidenced. Accordingly, in the first region it defects bring strong resistance fluctuations.
is Figure 7 reports the relative variance of resistance fluc-
tuations normalized to the linear regime value as a function
& of the normalized resistance. Constant-curfepien circleg
20 and constant-voltag€ull triangles conditions are shown.
We can see that the former quantity increases of more than
with ¢=(1.14+0.06)x10 2 a dimensionless coefficient, one order of magnitude in the same range of bias values

\Vi 2
=1l+c V—O) (10

while in the second region we have found where the latter quantity increases for about 60% only. The
log-log plot of [X—%,]/% as a function of [(R)
DIV VARAY —(R)o]/{R)o, shown in Fig. 8 under both bias conditions,
2_0~<V_0 , (11D confirms the proportionality oF with (R) in the moderate

bias region and evidences the following power law in the

where 7,=3.0+0.1. This behavior ofS under constant- Prebreakdown region:

voltage conditions should be compared with that of the av-
erage resistance that remains always a quadratic function up ¢
to the breakdown, as shown in FigaB The emergence of a [2-2o] [R)—(Rdl (14)
superquadratic behavior & in the prebreakdown region % (Ryo 7
reflects the higher sensitivity of the resistance fluctuations
with respect to the average value of the resistance to the
instability of the network. The same analysis performed forwhere the value of the exponetit=1.5=0.1, is practically
the case of constant current is shown in Figh)6Again, at  the same(within the statistical uncertaintyfor constant-
moderate bia§3,—3,]/3, increases quadratically with the Voltage or constant-current conditions. This result is consis-
current as tent with Eq5(3) and (4)
To complete the study of resistance fluctuations, we have
[\2 investigated the Gaussian properties of the fluctuation ampli-
—> (12 tudes and the spectra in the frequency domain. Figu@s 9
and 9b) report the distribution function of the resistance
with ¢’ = (6.6+0.4)x 10" a dimensionless coefficient. On fluctuationsp(R) for d.ifferent currents and different bath
. . temperatures, respectively. The dotted and the long-dashed
the other hand, the superquadratic dependence characterizes L d to fit with a Gaussian distri-
the prebreakdown region as guryes in Fig. %) correspond fo 1t | .
ution the data corresponding to different current values in
s, | the prebreakdown region @ay=300 K, while in Fig. 9b) to
% ('o

=1+c’

|
S,

lo

i
' (13) fit the data corresponding to different bath temperatures at

I=1.5 A. When approaching the breakdown conditions, at
increasing current in Fig.(8) and at increasing temperature
with 7, =5.4+0.1. We note, thaty, is significantly greater in Fig. 9b), the simulations show the onset of a non-
than 7y, according to the behaviors shown in Fig. 5. More- Gaussian behavior characterized by the enhancement of the
over, , is greater than the resistance exponent in the prebprobability for the positive fluctuations with respect to the
reakdown regiorg, . It is noteworthy, that by neglecting the Gaussian distribution. The emergence of a non-Gaussian be-
effect of the temperature coefficient of the resistance, i.e., byravior near the breakdown, in agreement with experiments
taking =0, the moderate bias region remains characterizef45,40,41, can be considered a relevant precursor of failure.
by a quadratic increase that is common to both constant- Figures 10a) and 1@b) show the spectral densities of
current and constant-voltage conditions. However, in the preresistance fluctuations for the same conditions of Figa). 9
breakdown region we have foungl,= 7,=4.0=0.1. Thus, and 9b). The spectral densities have been calculated by Fou-
the above results prove that the quadratic dependen&e of rier transforming the corresponding correlation functions
on the bias in the moderate bias region is a feature indeperG s(t). We have found Lorentzian spectra in all the cases.
dent of the conditions on which the bias is applied and alsd~or a given temperature, within the numerical uncertainty,
independent of the value of the thermal coefficient of thethe corner frequency is found to be independent of the ap-
resistance. This reflects the fact that at moderate bias the twaied current, while the value of the plateau increases more
following conditions are satisfiedi) the variation of the than quadratically with the current in the prebreakdown re-
average fraction of defects follows E€Q); (ii) the average gion. For a given current in the prebreakdown region, both
fraction of defects is much smaller than the percolationthe corner frequency and the value of the plateau are found
threshold value, i.e{p)<p.. Therefore, in this nearly per- to increase at increasing temperatures. This fact indicates
fect regimeX «(p)=(R) [42]. On the other hand, the super- that the characteristic times of fluctuations while depending
quadratic behavior ok in the prebreakdown region is a on temperature are independent of the applied bias. We fi-
consequence of the fact that at high biases the local correlaally remark that the power spectral density in Figs(al0
tions in the defect generation and recovery processes becormaed 1Q@b) are in good agreement with experiments
strong. Defect filamentation, characteristic of biased percolg-17,19,45.
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IV. CONCLUSIONS dratic dependence appears in the prebreakdown region. The

We have studied the stationary state of a two-dimensiona@resence of two distinct regions in the nonlinear regime has

RRN resulting from the competition between two biased pro- " explained in the following terms. At moderate bias
9 petitic . Pr9%here is a small Joule heating giving rise to the competitions
cesses. The two processes consist of the breaking and recoy-

. . ; -~ of two nearly random processes and to a small variation of
ering of elementary resistors and they are driven by the 19N e RRN resistance. At high bias, local correlations typical of
effects of an electrical bias and of the heat exchange with : '

thermal bath. The electrical bias is set up by applying a Conjglased percolation become important. Moreover, also the re-

stant voltage or a constant current. MC simulations hav sistance variation becomes strong, T.h erefore, as a conse-
been performed to analyze the network resistance and it uence of bqth these effe'cts the resistance noise depends
fluctuation properties in the full range of bias values, cover- uperquadratlcally_on the bias. The power spectral Qensny of
Lo ) ; '~ 5= resistance fluctuations is found to exhibit a Lorentzian spec-
ing linear and nonlinear regimes up to the breakdown limit.

The nonlinear regime starts for biases greater than the thresbrum and in the prebreakdown region the amplitude of fluc-

. ) ) uations shows the onset of non-Gaussian behaviors. Theo-
old values,V, or |, (nonlinearity onset valugsand it ex-
tends until the value¥,, or |, (breakdown values The ra-

retical results agree qualitatively, and in some cases
tios Vp/Vg, Ip/lg, (R),/{R)g can be considered as

guantitatively, with breakdown experiments performed in
relevant indicators characterizing the breakdown propertiecomposnes[m’15 and in other conductingl7,20,4Q or
of the system. We have found that the rafR),/(R), is

ﬁonconducting materialgt1]. We conclude that the study of
) . . . the stationary state of a RRN, resulting from the competition
mdepend.ept of the bias gond|t|ons t.)Ut it depends on Fhe ther biased percolative processes, provides an unifying frame-
mal coefficient of the resistance. This result agrees with megg . ¢or the interpretation of several nonlinear transport phe-
surements of this ratio performed in composit&s]. More-
over, we have found that under constant-voltage conditions

nomena in a variety of disordered systems.
the relative variation of the average resistance scales qua-
dratically with the ratioV/V, over the full nonlinear regime.
A similar relation has been found under constant-current
conditions, but in this case a superquadratic dependence This research is performed within the STATE project of
emerges in the prebreakdown region>(0l,). For what INFM. Partial support is also provided by the MADESS Il
concerns the relative variance of resistance fluctuations wproject of the Italian National Research Council and the ASI
have found that at moderate bidg€|<10l,) it grows qua-  project, Contract No. I/R/056/01. We thank Professor L. B.
dratically with the bias, independently of constant-current oiKish and Dr. Z. Gingl who introduced us to the biased per-
constant-voltage conditions. On the other hand a superqua&olation picture.

ACKNOWLEDGMENTS

[1] H. J. Herrmann and S. Roustatistical Models for the Frac- 44, 6773(199)); K. K. Bardhan, Physica 241, 267 (1997.
ture of Disordered Medid&North-Holland, Amsterdam, 1990  [13] L. Lamaignee, F. Carmona, and D. Sornette, Phys. Rev. Lett.

[2] K. K. Bardhan, B. K. Chakrabarti, and A. HanseNpn- 77, 2738(1996.
Linearity and Breakdown in Soft Condensed Maf®pringer-  [14] U. N. Nandi, C. D. Mukherjee, and K. K. Bardhan, Phys. Rev.
Verlag, New York, 1994 B 54, 12 903(1996.

[3] A. Bunde and S. HavlinFractals and Disordered Systems [15] C. D. Mukherjee, K. K. Bardhan, and M. B. Heaney, Phys.
(Springer-Verlag, Berlin, 1996 Rev. Lett.83, 1215(1999.

[4] L. De Arcangelis, A. Hansen, H. J. Herrmann, and S. Roux,[16] Z. Rubin, S. A. Sunshine, M. B. Heaney, I. Bloom, and I.
Phys. Rev. BA0, 877 (1989. Balberg, Phys. Rev. B9, 12 196(1999.

[5] M. Sahimi and S. Arbabi, Phys. Rev. Le6i8, 608 (1992. [17] A. Scorzoni, B. Neri, C. Caprile, and F. Fantini, Mater. Sci.

[6] M. B. Heaney, Phys. Rev. B2, 12 477(1995. Rep.7, 143(199)).

[7] M. Acharyya and B. K. Chakrabarti, Phys. Rev.53, 140  [18] B. K. Jones, Y. Z. Xu, and P. Zobbi, Microelectron. Reli&B,
(1996 1051(1996.

[8] J. V. Andersen, D. Sornette, and K. T. Leung, Phys. Rev. Lett[19] M. Ohring, Reliability and Failure of Electronic Materials and
78, 2140(1997). Devices(Academic Press, San Diego, 1998

[9] S. Zapperi, A. Vespignani, and H. E. Stanley, Nat(irendon [20] I. Bloom and I. Balberg, Appl. Phys. Letf4, 1427(1999.
388 659 (1997; S. Zapperi, P. Ray, H. E. Stanley, and A. [21] S. Hirano and A. Kishimoto, Jpn. J. Appl. Phys., Par8&

Vespignani, Phys. Rev. Letf8, 1408(1997); Physica A270, L662 (1999.
57 (1999. [22] L. B. Kish, P. Chaoguang, J. Ederth, C. G. Granqgvist, and S. J.
[10] R. Albert, H. Jeong, and A. L. Barabasi, Natyte@ndon 406, Savage, Surf. Coat. Techndto be published
378 (2000; A. L. Barabasi and R. Albert, Scien@36, 509 [23] C. Pennetta, L. Reggiani, G. Trefan, F. Fantini, A. Scorzoni,
(1999. and |. De Munari, J. Phys. B4, 1421(200J.
[11] A. Gabrielli, G. Caldarelli, and L. Pietronero, Phys. Re\v6E [24] H. E. Stanley, Rev. Mod. Phyg1, S358(1999.
7638(2000. [25] D. Stauffer and A. Aharony,Introduction to Percolation

[12] R. K. Chakrabarti, K. K. Bardhan, and A. Basu, Phys. Rev. B Theory(Taylor & Francis, London, 1992

066119-9



PENNETTA, REGGIANI, TREIf/N, AND ALFINITO PHYSICAL REVIEW E 65 066119

[26] M. Sahimi,Application of Percolation Theor§Taylor & Fran-  [36] C. Pennetta, L. Reggiani, and L. B. Kish, Physic2@6, 214

cis, London, 1994 (1999.
[27] P. M. Duxbury, P. L. Leath, and P. D. Beale, Phys. Re®@ [37] C. Pennetta, L. Reggiani, and Gy. Trefan, Phys. Rev. 1Bdit.
367(1987. 5006 (2000.
[28] R. Rammal, C. Tannous, P. Breton, and A. M. S. Tremblay,[38] C. Pennetta, Gy. Trefan, and L. ReggianiPiroceedings of the
Phys. Rev. Lett54, 1718(1985; R. Rammal, C. Tannous, and Second International Conference in Unsolved Problems of
A. M. S. Tremblay, Phys. Rev. &1, 2662(1985. Noise and Fluctuationsedited by D. Abbott and L. B. Kish
[29] R. Rammal and A. M. S. Tremblay, Phys. Rev. L&®8, 415 (AIP, New York, 1999, p. 447.
(1987). [39] C. Pennetta, E. Alfinito, L. Reggiani, and G. Trefan, J. Phys. C
[30] M. A. Dubson, Y. C. Hui, M. B. Weissman, and J. C. Garland, 14, 2371(2002.
Phys. Rev. B39, 6807(1989. [40] G. T. Seidler, S. A. Solin, and A. C. Marley, Phys. Rev. Lett.
[31] Y. Yagil, G. Deutscher, and D. J. Bergman, Phys. Rev. l6&t. 76, 3049(1996.
1423(1992; Y. Yagil and G. Deutscher, Phys. Rev.48, 16 [41] N. Vandewalle, M. Ausloos, M. Houssa, P. W. Mertens, and M.
115(1992. M. Heyns, Appl. Phys. Lett74, 1579(1999.
[32] D. Sornette and C. Vanneste, Phys. Rev. L&#f.612 (1992. [42] C. Pennetta, G. Trefan, and L. Reggiani, Phys. Rev. 18&it.
[33] A. A. Snarskii, A. E. Morozovsky, A. Kolek, and A. Kusy, 5238(2000.
Phys. Rev. B53, 5596(1996. [43] C. Pennetta, L. Reggiani, and G. Trefan, Math. Comput. Simul.
[34] A. Gingl, C. Pennetta, L. B. Kish, and L. Reggiani, Semicond. 55, 231 (2001).
Sci. Technol.11, 1770(1996. [44] Y. C. Zhang, Phys. Rev. B6, 2345(1987).
[35] I. Balberg, Phys. Rev. B7, 13 351(1998. [45] M. B. Weissman, Rev. Mod. Phy&0, 537 (1988.

066119-10



